Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 40
Filtrer
2.
J Neurochem ; 167(2): 168-182, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37680022

RÉSUMÉ

Neurodegenerative diseases are a broad heterogeneous group affecting the nervous system. They are characterized, from a pathophysiological perspective, by the selective involvement of a subpopulation of nerve cells with a consequent clinical picture of a disease. Clinical diagnoses of neurodegenerative diseases are quite challenging and often not completely accurate because of their marked heterogeneity and frequently overlapping clinical pictures. Efforts are being made to define sufficiently specific and sensitive markers for individual neurodegenerative diseases or groups of diseases in order to increase the accuracy and speed of clinical diagnosis. Thus said, this present research aimed to identify biomarkers in the cerebrospinal fluid (CSF) and serum (α-synuclein [α-syn], tau protein [t-tau], phosphorylated tau protein [p-tau], ß-amyloid [Aß], clusterin, chromogranin A [chromogrA], cystatin C [cyst C], neurofilament heavy chains [NFH], phosphorylated form of neurofilament heavy chains [pNF-H], and ratio of tau protein/amyloid beta [Ind tau/Aß]) that could help in the differential diagnosis and differentiation of the defined groups of α-synucleinopathies and four-repeat (4R-) tauopathies characterized by tau protein isoforms with four microtubule-binding domains. In this study, we analyzed a cohort of 229 patients divided into four groups: (1) Parkinson's disease (PD) + dementia with Lewy bodies (DLB) (n = 82), (2) multiple system atrophy (MSA) (n = 25), (3) progressive supranuclear palsy (PSP) + corticobasal syndrome (CBS) (n = 30), and (4) healthy controls (HC) (n = 92). We also focused on analyzing the biomarkers in relation to each other with the intention of determining whether they are useful in distinguishing among individual proteinopathies. Our results indicate that the proposed set of biomarkers, when evaluated in CSF, is likely to be useful for the differential diagnosis of MSA versus 4RT. However, these biomarkers do not seem to provide any useful diagnostic information when assessed in blood serum.

3.
Nat Rev Neurol ; 19(10): 599-616, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37684518

RÉSUMÉ

The term 'endemic parkinsonism' refers to diseases that manifest with a dominant parkinsonian syndrome, which can be typical or atypical, and are present only in a particular geographically defined location or population. Ten phenotypes of endemic parkinsonism are currently known: three in the Western Pacific region; two in the Asian-Oceanic region; one in the Caribbean islands of Guadeloupe and Martinique; and four in Europe. Some of these disease entities seem to be disappearing over time and therefore are probably triggered by unique environmental factors. By contrast, other types persist because they are exclusively genetically determined. Given the geographical clustering and potential overlap in biological and clinical features of these exceptionally interesting diseases, this Review provides a historical reference text and offers current perspectives on each of the 10 phenotypes of endemic parkinsonism. Knowledge obtained from the study of these disease entities supports the hypothesis that both genetic and environmental factors contribute to the development of neurodegenerative diseases, not only in endemic parkinsonism but also in general. At the same time, this understanding suggests useful directions for further research in this area.


Sujet(s)
Syndromes parkinsoniens , Humains , Syndromes parkinsoniens/épidémiologie , Syndromes parkinsoniens/génétique , Guadeloupe/épidémiologie , Europe , Phénotype , Biologie
4.
J Neurol Sci ; 446: 120588, 2023 03 15.
Article de Anglais | MEDLINE | ID: mdl-36827809

RÉSUMÉ

In post-stroke spasticity (PSS), effective treatment with botulinum neurotoxin (BoNT) is associated with transient decrease in activation of the ipsilesional superior parietal lobule (SPL) and intraparietal sulcus (IPS). We hypothesized that this would be reflected in changes in resting-state functional connectivity (rsFC) of the SPL/IPS. Our aim was therefore to assess rsFC of the ipsilesional SPL/IPS in chronic stroke patients with hemiparesis both with and without PSS and to explore the relationship between SPL/IPS rsFC and PSS severity. To this end, fourteen chronic stroke patients with upper limb weakness and PSS (the PSS group) and 8 patients with comparable weakness but no PSS (the control group) underwent clinical evaluation and 3 fMRI examinations, at baseline (W0) and 4 and 11 weeks after BoNT (W4 and W11, respectively). Seed-based rsFC of the atlas-based SPL and IPS was evaluated using a group×time interaction analysis and a correlation analysis with PSS severity (modified Ashworth scale), integrity of the ipsilesional somatosensory afferent pathway (evoked potential N20 latency), and age. In the PSS group, transient improvement in PSS was associated with increase in rsFC between the ipsilesional IPS and the contralesional SPL at W4. The interhemispheric connectivity was negatively correlated with PSS severity at baseline and with PSS improvement at W4. We propose adaptation of the internal forward model as the putative underlying mechanism and discuss its possible association with increased limb use, diminished spastic dystonia, or improved motor performance, as well as its potential contribution to the clinical effects of BoNT.


Sujet(s)
Toxines botuliniques de type A , Agents neuromusculaires , Accident vasculaire cérébral , Humains , Toxines botuliniques de type A/usage thérapeutique , Spasticité musculaire , Agents neuromusculaires/usage thérapeutique , Accident vasculaire cérébral/complications , Lobe pariétal , Imagerie par résonance magnétique
5.
Int J Neurosci ; 133(8): 834-839, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-34666599

RÉSUMÉ

BACKGROUND: The pathophysiology of abnormal temperature sensation in Parkinson's disease (PD) remains unclear. Abnormal thermal detection does not seem to depend on the dopaminergic deficit, suggesting that other systems play a role in these changes, probably both central and peripheral. METHODS: We measured thermal detection thresholds (TDT) using quantitative sensory testing (QST) in 28 patients with PD and compared them with 15 healthy controls. RESULTS: Of 28 patients, 21% had increased TDT according to the normative data. TDT were higher on the dominant side. No correlation between TDT and disease duration, severity of motor impairment, and dopaminergic therapy was observed. 50% of the patients had difficulty differentiating between warm and cold stimuli, as TDT were within the normal range in most of these patients. CONCLUSIONS: Twenty-one percent of the patients in our study had increased TDT according to the normative data. Abnormal thermal detection was more pronounced on the dominant side. Abnormal differentiation between the thermal stimuli suggest impaired central processing of thermal information.


Sujet(s)
Maladie de Parkinson , Humains , Maladie de Parkinson/diagnostic , Température , Études cas-témoins , Sensation/physiologie , Basse température
6.
Diagnostics (Basel) ; 12(12)2022 Dec 12.
Article de Anglais | MEDLINE | ID: mdl-36553139

RÉSUMÉ

Deep brain stimulation (DBS) is a beneficial procedure for treating idiopathic Parkinson's disease (PD), essential tremor, and dystonia. The authors describe their set of imaging modalities used for a frameless and fiducial-less method of DBS. CT and MRI scans are obtained preoperatively, and STN parcellation is done based on diffusion tractography. During the surgery, an intraoperative cone-beam computed tomography scan is obtained and merged with the preoperatively-acquired images to place electrodes using a frameless and fiducial-less system. Accuracy is evaluated prospectively. The described sequence of imaging methods shows excellent accuracy compared to the frame-based techniques.

8.
NPJ Parkinsons Dis ; 8(1): 3, 2022 Jan 10.
Article de Anglais | MEDLINE | ID: mdl-35013341

RÉSUMÉ

The current nosological concept of α-synucleinopathies characterized by the presence of Lewy bodies (LBs) includes Parkinson's disease (PD), Parkinson's disease dementia (PDD), and dementia with Lewy bodies (DLB), for which the term "Lewy body disease" (LBD) has recently been proposed due to their considerable clinical and pathological overlap. However, even this term does not seem to describe the true nature of this group of diseases. The subsequent discoveries of α-synuclein (αSyn), SNCA gene, and the introduction of new immunohistochemical methods have started intensive research into the molecular-biological aspects of these diseases. In light of today's knowledge, the role of LBs in the pathogenesis and classification of these nosological entities remains somewhat uncertain. An increasingly more important role is attributed to other factors as the presence of various LBs precursors, post-translational αSyn modifications, various αSyn strains, the deposition of other pathological proteins (particularly ß-amyloid), and the discovery of selective vulnerability of specific cells due to anatomical configuration or synaptic dysfunction. Resulting genetic inputs can undoubtedly be considered as the main essence of these factors. Molecular-genetic data indicate that not only in PD but also in DLB, a unique genetic architecture can be ascertained, predisposing to the development of specific disease phenotypes. The presence of LBs thus remains only a kind of link between these disorders, and the term "diseases with Lewy bodies" therefore results somewhat more accurate.

9.
Article de Anglais | MEDLINE | ID: mdl-33883752

RÉSUMÉ

BACKGROUND: In this study we evaluated the impact of location of deep brain stimulation electrode active contact in different parts of the subthalamic nucleus on improvement of non-motor symptoms in patients with Parkinson's disease. METHODS: The subthalamic nucleus was divided into two (dorsolateral/ventromedial) and three (dorsolateral, medial, ventromedial) parts. 37 deep brain stimulation electrodes were divided according to their active contact location. Correlation between change in non-motor symptoms before and one and four months after deep brain stimulation electrode implantation and the location of active contact was made. RESULTS: In dividing the subthalamic nucleus into three parts, no electrode active contact was placed ventromedially, 28 active contacts were located in the medial part and 9 contacts were placed dorsolaterally. After one and four months, no significant difference was found between medial and dorsolateral positions. In the division of the subthalamic nucleus into two parts, 13 contacts were located in the ventromedial part and 24 contacts were placed in the dorsolateral part. After one month, significantly greater improvement in the Non-motor Symptoms Scale for Parkinson's disease (P=0.045) was found on dorsolateral left-sided stimulation, but no significant differences between the ventromedial and dorsolateral positions were found on the right side. CONCLUSION: This study demonstrated the relationship between improvement of non-motor symptoms and the side (hemisphere, left/right) of the deep brain stimulation electrode active contact, rather than its precise location within specific parts of the subthalamic nucleus in patients treated for advanced Parkinson's disease.


Sujet(s)
Stimulation cérébrale profonde , Maladie de Parkinson , Noyau subthalamique , Électrodes , Humains , Maladie de Parkinson/thérapie , Noyau subthalamique/physiologie , Résultat thérapeutique
10.
Medicine (Baltimore) ; 100(25): e26356, 2021 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-34160405

RÉSUMÉ

ABSTRACT: In dystonic and spastic movement disorders, abnormalities of motor control and somatosensory processing as well as cortical modulations associated with clinical improvement after botulinum toxin A (BoNT-A) treatment have been reported, but electrophysiological evidence remains controversial. In the present observational study, we aimed to uncover central correlates of post-stroke spasticity (PSS) and BoNT-A-related changes in the sensorimotor cortex by investigating the cortical components of somatosensory evoked potentials (SEPs). Thirty-one chronic stroke patients with PSS of the upper limb were treated with BoNT-A application into the affected muscles and physiotherapy. Clinical and electrophysiological evaluations were performed just before BoNT-A application (W0), then 4 weeks (W4) and 11 weeks (W11) later. PSS was evaluated with the modified Ashworth scale (MAS). Median nerve SEPs were examined in both upper limbs with subsequent statistical analysis of the peak-to-peak amplitudes of precentral P22/N30 and postcentral N20/P23 components. At baseline (W0), postcentral SEPs were significantly lower over the affected cortex. At follow up, cortical SEPs did not show any significant changes attributable to BoNT-A and/or physiotherapy, despite clear clinical improvement. Our results imply that conventional SEPs are of limited value in evaluating cortical changes after BoNT-A treatment and further studies are needed to elucidate its central actions.


Sujet(s)
Toxines botuliniques de type A/administration et posologie , Spasticité musculaire/traitement médicamenteux , Agents neuromusculaires/administration et posologie , Réadaptation après un accident vasculaire cérébral/méthodes , Accident vasculaire cérébral/complications , Adulte , Sujet âgé , Potentiels évoqués somatosensoriels/effets des médicaments et des substances chimiques , Traitement par les exercices physiques/méthodes , Femelle , Études de suivi , Humains , Mâle , Nerf médian/effets des médicaments et des substances chimiques , Nerf médian/physiopathologie , Adulte d'âge moyen , Spasticité musculaire/diagnostic , Spasticité musculaire/étiologie , Spasticité musculaire/physiopathologie , Cortex somatosensoriel/effets des médicaments et des substances chimiques , Cortex somatosensoriel/physiopathologie , Accident vasculaire cérébral/physiopathologie , Résultat thérapeutique , Membre supérieur/innervation , Jeune adulte
11.
Sci Rep ; 11(1): 8322, 2021 04 15.
Article de Anglais | MEDLINE | ID: mdl-33859210

RÉSUMÉ

In cervical dystonia, functional MRI (fMRI) evidence indicates changes in several resting state networks, which revert in part following the botulinum neurotoxin A (BoNT) therapy. Recently, the involvement of the cerebellum in dystonia has gained attention. The aim of our study was to compare connectivity between cerebellar subdivisions and the rest of the brain before and after BoNT treatment. Seventeen patients with cervical dystonia indicated for treatment with BoNT were enrolled (14 female, aged 50.2 ± 8.5 years, range 38-63 years). Clinical and fMRI examinations were carried out before and 4 weeks after BoNT injection. Clinical severity was evaluated using TWSTRS. Functional MRI data were acquired on a 1.5 T scanner during 8 min rest. Seed-based functional connectivity analysis was performed using data extracted from atlas-defined cerebellar areas in both datasets. Clinical scores demonstrated satisfactory BoNT effect. After treatment, connectivity decreased between the vermis lobule VIIIa and the left dorsal mesial frontal cortex. Positive correlations between the connectivity differences and the clinical improvement were detected for the right lobule VI, right crus II, vermis VIIIb and the right lobule IX. Our data provide evidence for modulation of cerebello-cortical connectivity resulting from successful treatment by botulinum neurotoxin.


Sujet(s)
Toxines botuliniques de type A/administration et posologie , Cervelet/physiopathologie , Cognition/physiologie , Repos/physiologie , Torticolis/traitement médicamenteux , Torticolis/physiopathologie , Adulte , Cortex cérébral/physiopathologie , Femelle , Humains , Injections intralésionnelles , Imagerie par résonance magnétique , Mâle , Adulte d'âge moyen , Indice de gravité de la maladie , Torticolis/imagerie diagnostique , Torticolis/psychologie , Résultat thérapeutique
12.
J Neural Transm (Vienna) ; 128(4): 509-519, 2021 04.
Article de Anglais | MEDLINE | ID: mdl-33591454

RÉSUMÉ

The complex phenomenological understanding of dystonia has transcended from the clinics to genetics, imaging and neurophysiology. One way in which electrophysiology will impact into the clinics are cases wherein a dystonic clinical presentation may not be typical or a "forme fruste" of the disorder. Indeed, the physiological imprints of dystonia are present regardless of its clinical manifestation. Underpinnings in the understanding of dystonia span from the peripheral, segmental and suprasegmental levels to the cortex, and various electrophysiological tests have been applied in the course of time to elucidate the origin of dystonia pathophysiology. While loss of inhibition remains to be the key finding in this regard, intricacies and variabilities exist, thus leading to a notion that perhaps dystonia should best be gleaned as network disorder. Interestingly, the complex process has now spanned towards the understanding in terms of networks related to the cerebellar circuitry and the neuroplasticity. What is evolving towards a better and cohesive view will be neurophysiology attributes combined with structural dynamic imaging. Such a sound approach will significantly lead to better therapeutic modalities in the future.


Sujet(s)
Dystonie , Troubles dystoniques , Cervelet , Cortex cérébral , Humains , Neurophysiologie
13.
Article de Anglais | MEDLINE | ID: mdl-33542542

RÉSUMÉ

Parkinson's disease (PD) is characterized by typical motor symptoms. However, recent studies show several non-motor features that may precede the development of the motor symptoms of PD. The best known premotor symptoms include hyposmia, REM sleep behavior disorder (RBD), constipation, and depression; other symptoms are excessive daytime somnolence, orthostatic hypotension and symptomatic hypotension, erectile or urinary dysfunction, musculoskeletal symptoms, pain, and global cognitive deficit. In this review, we summarize currently available diagnostic methods for these symptoms. We also briefly summarize neuroimaging, polyneuropathy, peripheral markers, and cerebrospinal fluid biomarkers that may be used in the early diagnosis of PD.


Sujet(s)
Troubles de la cognition , Maladie de Parkinson , Trouble du comportement en sommeil paradoxal , Constipation , Diagnostic précoce , Humains , Maladie de Parkinson/diagnostic , Trouble du comportement en sommeil paradoxal/diagnostic , Trouble du comportement en sommeil paradoxal/étiologie
14.
Brain Sci ; 10(10)2020 Sep 27.
Article de Anglais | MEDLINE | ID: mdl-32992610

RÉSUMÉ

OBJECT: Deep brain stimulation (DBS) is a very useful procedure for the treatment of idiopathic Parkinson's disease (PD), essential tremor, and dystonia. The authors evaluated the accuracy of the new method used in their center for the placing of DBS electrodes. Electrodes are placed using the intraoperative O-arm™ (Medtronic)-controlled frameless and fiducial-less system, Nexframe™ (Medtronic). Accuracy was evaluated prospectively in eleven consecutive PD patients (22 electrodes). METHODS: Eleven adult patients with PD were implanted using the Nexframe system without fiducials and with the intraoperative O-arm (Medtronic) system and StealthStation™ S8 navigation (Medtronic). The implantation of DBS leads was performed using multiple-cell microelectrode recording, and intraoperative test stimulation to determine thresholds for stimulation-induced adverse effects. The accuracy was checked in three different steps: (1) using the intraoperative O-arm image and its fusion with preoperative planning, (2) using multiple-cell microelectrode recording and counting the number of microelectrodes with the signal of the subthalamic nucleus (STN) and finally, (3) total error was calculated according to a postoperative CT control image fused to preoperative planning. RESULTS: The total error of the procedure was 1.79 mm; the radial error and the vector error were 171 mm and 163 mm. CONCLUSIONS: Implantation of DBS electrodes using an O-arm navigated frameless and fiducial-less system is a very useful and technically feasible procedure with excellent patient toleration with experienced Nexframe users. The accuracy of the method was confirmed at all three steps, and it is comparable to other published results.

15.
Front Neurosci ; 14: 814, 2020.
Article de Anglais | MEDLINE | ID: mdl-32922256

RÉSUMÉ

BACKGROUND: Gait disturbance accompanies many neurodegenerative diseases; it is characteristic for Parkinson's disease (PD). Treatment of advanced PD often includes deep brain stimulation (DBS) of the subthalamic nucleus. Regarding gait, previous studies have reported non-significant or conflicting results, possibly related to methodological limitations. OBJECTIVE: The objective of this prospective study was to assess the effects of DBS on biomechanical parameters of gait in patients with PD. METHODS: Twenty-one patients with advanced PD participated in this prospective study. Gait was examined in all patients using the Zebris FDM-T pressure-sensitive treadmill (Isny, Germany) before DBS implantation and after surgery immediately, further immediately after the start of neurostimulation, and 3 months after neurostimulator activation. We assessed spontaneous gait on a moving treadmill at different speeds. Step length, stance phase of both lower limbs, double-stance phase, and cadence were evaluated. RESULTS: In this study, step length increased, allowing the cadence to decrease. Double-stance phase duration, that is, the most sensitive parameter of gait quality and unsteadiness, was reduced, in gait at a speed of 4.5 km/h and in the narrow-based gaits at 1 km/h (tandem gait), which demonstrates improvement. CONCLUSION: This study suggests positive effects of DBS treatment on gait in PD patients. Improvement was observed in several biomechanical parameters of gait.

16.
Sci Rep ; 10(1): 1436, 2020 01 29.
Article de Anglais | MEDLINE | ID: mdl-31996749

RÉSUMÉ

The link between dystonia and tremor has been known for decades, but the question of whether they are two separate illnesses or just different manifestations of one disease with the same pathophysiological background remains unanswered. We distinguish two types of tremor in dystonia: dystonic tremor (DT), which appears on the body part affected by dystonia, and tremor associated with dystonia (TAWD), which appears in locations where the dystonia does not occur. In this study, the frequency of occurrence of different forms of tremor was determined by clinical examination in a group of adult-onset isolated cervical dystonia (CD) patients treated with regular local injections of botulinum toxin A in our department. In total, 120 patients were included in the study, of which 70 (58.3%) had DT of the head. TAWD was, in all 14 cases (11.7%), observed on the upper limbs, in the form of static or intentional tremor. The aim of this study was to point out the presence of TAWD as one of the clinical signs of CD. DT occurred in more than half of the patients and appears to be a relatively common part of the clinical picture in patients with CD.


Sujet(s)
Dystonie/épidémiologie , Torticolis/épidémiologie , Tremblement/épidémiologie , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , République tchèque/épidémiologie , Femelle , Humains , Mâle , Adulte d'âge moyen , Prévalence
17.
Front Neurol ; 10: 495, 2019.
Article de Anglais | MEDLINE | ID: mdl-31143157

RÉSUMÉ

Post-stroke spasticity (PSS) is effectively treated with intramuscular botulinum toxin type A (BoNT-A), although the clinical improvement is likely mediated by changes at the central nervous system level. Using functional magnetic resonance imaging (fMRI) of the brain, this study aims to confirm and locate BoNT-A-related changes during motor imagery with the impaired hand in severe PSS. Temporary alterations in primary and secondary sensorimotor representation of the impaired upper limb were expected. Thirty chronic stroke patients with upper limb PSS undergoing comprehensive treatment including physiotherapy and indicated for BoNT treatment were investigated. A change in PSS of the upper limb was assessed with the modified Ashworth scale (MAS). fMRI and clinical assessments were performed before (W0) and 4 weeks (W4) and 11 weeks (W11) after BoNT-A application. fMRI data were acquired using 1.5-Tesla scanners during imagery of finger-thumb opposition sequences with the impaired hand. At the group level, we separately modeled (1) average activation at each time point with the MAS score and age at W0 as covariates; and (2) within-subject effect of BoNT-A and the effect of time since W0 as independent variables. Comprehensive treatment of PSS with BoNT-A significantly decreased PSS of the upper limb with a maximal effect at W4. Task-related fMRI prior to treatment (W0) showed extensive activation of bilateral frontoparietal sensorimotor cortical areas, bilateral cerebellum, and contralesional basal ganglia and thalamus. After BoNT-A application (W4), the activation extent decreased globally, mostly in the bilateral parietal cortices and cerebellum, but returned close to baseline at W11. The intra-subject contrast revealed a significant BoNT-A effect, manifesting as a transient decrease in the activation of the ipsilesional intraparietal sulcus and superior parietal lobule. We demonstrate that BoNT-A treatment of PSS of the upper limb is associated with transient changes in the ipsilesional posterior parietal cortex, possibly resulting from temporarily altered sensorimotor upper limb representations.

18.
Medicine (Baltimore) ; 97(38): e12313, 2018 Sep.
Article de Anglais | MEDLINE | ID: mdl-30235682

RÉSUMÉ

An increased prevalence of familial neurodegenerative parkinsonism or cognitive deterioration was recently found in a small region of southeastern Moravia.The aim of the study was to assess the genetic background of this familial disease.Variants in the ADH1C, EIF4G1, FBXO7, GBA + GBAP1, GIGYF2, HTRA2, LRRK2, MAPT, PRKN, DJ-1, PINK1, PLA2G6, SNCA, UCHL1, VPS35 genes were examined in 12 clinically positive probands of the pedigree in which familial atypical neurodegenerative parkinsonism was identified in previous epidemiological studies. Libraries were sequenced by massive parallel sequencing (MPS) on the Personal Genome Machine (PGM; Ion Torrent). Data were analyzed using Torrent Suite and IonReporter software. All variants were then verified and confirmed by Sanger sequencing.We identified 31 rare heterozygous variants: 11 missense variants, 3 synonymous variants, 8 variants in the UTR region, and 9 intronic variants. Six variants (rs1801334, rs33995883, rs35507033, rs781737269, rs779760087, and rs63750072) were evaluated as pathogenic by at least one in-silico predictor.No single "founder" pathogenic variant associated with parkinsonism has been found in any of the probands from researched pedigree. It may rather be assumed that the familial occurrence of this disease is caused by the combined influence of several "small-effect" genetic variants that accumulate in the population with long-lasting inbreeding behavior.


Sujet(s)
Maladie de Parkinson/génétique , Pedigree , République tchèque/épidémiologie , Électroencéphalographie , Électromyographie , Potentiels évoqués moteurs , Prédisposition génétique à une maladie , Humains , Tests neuropsychologiques , Maladie de Parkinson/ethnologie
19.
Exp Brain Res ; 236(10): 2627-2637, 2018 Oct.
Article de Anglais | MEDLINE | ID: mdl-29971454

RÉSUMÉ

Botulinum toxin type A (BoNT) is considered an effective therapeutic option in cervical dystonia (CD). The pathophysiology of CD and other focal dystonias has not yet been fully explained. Results from neurophysiological and imaging studies suggest a significant involvement of the basal ganglia and thalamus, and functional abnormalities in premotor and primary sensorimotor cortical areas are considered a crucial factor in the development of focal dystonias. Twelve BoNT-naïve patients with CD were examined with functional MRI during a skilled hand motor task; the examination was repeated 4 weeks after the first BoNT injection to the dystonic neck muscles. Twelve age- and gender-matched healthy controls were examined using the same functional MRI paradigm without BoNT injection. In BoNT-naïve patients with CD, BoNT treatment was associated with a significant increase of activation in finger movement-induced fMRI activation of several brain areas, especially in the bilateral primary and secondary somatosensory cortex, bilateral superior and inferior parietal lobule, bilateral SMA and premotor cortex, predominantly contralateral primary motor cortex, bilateral anterior cingulate cortex, ipsilateral thalamus, insula, putamen, and in the central part of cerebellum, close to the vermis. The results of the study support observations that the BoNT effect may have a correlate in the central nervous system level, and this effect may not be limited to cortical and subcortical representations of the treated muscles. The results show that abnormalities in sensorimotor activation extend beyond circuits controlling the affected body parts in CD even the first BoNT injection is associated with changes in sensorimotor activation. The differences in activation between patients with CD after treatment and healthy controls at baseline were no longer present.


Sujet(s)
Voies afférentes/imagerie diagnostique , Toxines botuliniques de type A/usage thérapeutique , Imagerie par résonance magnétique/méthodes , Agents neuromusculaires/usage thérapeutique , Cortex sensorimoteur/imagerie diagnostique , Torticolis , Adulte , Voies afférentes/effets des médicaments et des substances chimiques , Sujet âgé , Femelle , Humains , Traitement d'image par ordinateur , Mâle , Adulte d'âge moyen , Oxygène/sang , Performance psychomotrice/effets des médicaments et des substances chimiques , Cortex sensorimoteur/effets des médicaments et des substances chimiques , Statistique non paramétrique , Torticolis/imagerie diagnostique , Torticolis/traitement médicamenteux , Torticolis/physiopathologie
20.
Article de Anglais | MEDLINE | ID: mdl-29795545

RÉSUMÉ

AIMS: The main aim of this study was to provide an estimate of the incidence and prevalence of spasticity following stroke in the internal carotid artery territory for Regional Stroke Centers in the Czech Republic. A secondary goal was to identify predictors for the development of spasticity. METHODS: In a prospective cohort study, 256 consecutive patients with clinical signs of central paresis due to a first-ever stroke were examined in the acute stage. All patients had primary stroke of carotid origin and paresis of the upper and/or lower limb for longer than 7 days after stroke onset. All were examined between 7-10 days after the stroke. We evaluated the degree and pattern of paresis, spasticity using the Modified Ashworth scale and the Barthel Index, baseline characteristics and demographic data. RESULTS: Of 256 patients (157 males; mean age 69.9±12.4 years), 115 (44.9%) patients developed spasticity during the first 10 days after stroke onset. Eighty-three (32.5%) patients presented with mild neurological deficit (modified Rankin Scale 0 - 2) and 69 (27.0%) patients were bedridden. CONCLUSION: Spasticity was noted in 44.9% patients with neurological deficit due to first-ever stroke in the carotid territory in the first 10 days after stroke onset. Severe spasticity was rare.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...